不止CPU,苹果M1 Mac 现已支持在 PyTorch 训

IT资讯2年前 (2022)更新 IT资讯
0

本篇文章给各位网友带来的资讯是:不止 CPU,苹果 M1 Mac 现已支持在 PyTorch 训练中用 GPU 加速 详情请欣赏下文感谢IT大王网友 末6_ 的线索投递!

一直以来,Pytorch 在 Mac 上仅支持使用 CPU 进行训练。就在刚刚,Pytorch 官方宣布,其最新版 v1.12 可以支持 GPU 加速了。只要是搭载了 M1 系列芯片的 Mac 都行。

不止CPU,苹果M1 Mac 现已支持在 PyTorch 训

这也就意味着在 Mac 本机用 Pytorch“炼丹”会更方便了!

训练速度可提升约 7 倍

此功能由 Pytorch 与 Apple 的 Metal 工程团队合作推出。它使用 Apple 的 Metal Performance Shaders (MPS) 作为 PyTorch 的后端来启用 GPU 加速训练

为了优化计算性能,MPS 还针对 Metal GPU 系列的独特特性对每个内核进行了微调。

Metal 是一个类似 OpenGL 的框架,只不过 OpenGL 适用于各平台的移动端 GPU 渲染和计算,Metal 专用于 iOS / MacOS 平台,不过也兼顾了性能和易用性

MPS 就是一套基于 Metal 框架的库,直接调用即可使用 GPU 的高性能进行图形处理、构建卷积神经网络等工作。

不止CPU,苹果M1 Mac 现已支持在 PyTorch 训

苹果官方在搭载了 M1 Ultra、20 核 CPU、64 核 GPU、128GB RAM 和 2TB SSD 的 Mac Studio 上进行了测试。(这阵容差不多能算是豪华配置了)。

他们分别训练了 batch size 为 128 的 ResNet50、batch size 为 64 的 HuggingFace BERT,以及 batch size=64 的 VGG16。

从下图中我们可以发现,相比使用 CPU 加速,使用 GPU 可将模型训练速度提高约 7 倍,评估(evaluation)速度则最高能提约 20 倍。

不止CPU,苹果M1 Mac 现已支持在 PyTorch 训

看到这儿,有网友开始好奇它与搭载了 Nvidia GPU 的 laptop 相比性能如何。

不止CPU,苹果M1 Mac 现已支持在 PyTorch 训

有人表示,虽说目前 M1 的原始计算性能比不上英伟达的产品,但功耗方面还不错。未来苹果很有可能慢慢追上性能。总的来说,Mac Studio 现在看起来实在太香了。

他进一步解释道:“毕竟它是你花 4800 美元就能买到的最便宜、包含 128GB GPU 内存的机器。现在有了基于 GPU 加速的 PyTorch 支持,完全可以用来训练大模型、配置大的 batch size。对于我所做的那种 DL 工作,数据加载比实际的原始计算能力更容易成为瓶颈。”

不止CPU,苹果M1 Mac 现已支持在 PyTorch 训

你心动了吗?现在就试试?

需保证你的 macOS 操作系统在 12.3 版本及以上,且安装了 arm64 原生 Python,然后去官网下载最新的 Pytorch 预览版就可以了。

不止CPU,苹果M1 Mac 现已支持在 PyTorch 训

地址:

https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/

© 版权声明
好牛新坐标 广告
版权声明:
1、IT大王遵守相关法律法规,由于本站资源全部来源于网络程序/投稿,故资源量太大无法一一准确核实资源侵权的真实性;
2、出于传递信息之目的,故IT大王可能会误刊发损害或影响您的合法权益,请您积极与我们联系处理(所有内容不代表本站观点与立场);
3、因时间、精力有限,我们无法一一核实每一条消息的真实性,但我们会在发布之前尽最大努力来核实这些信息;
4、无论出于何种目的要求本站删除内容,您均需要提供根据国家版权局发布的示范格式
《要求删除或断开链接侵权网络内容的通知》:https://itdw.cn/ziliao/sfgs.pdf,
国家知识产权局《要求删除或断开链接侵权网络内容的通知》填写说明: http://www.ncac.gov.cn/chinacopyright/contents/12227/342400.shtml
未按照国家知识产权局格式通知一律不予处理;请按照此通知格式填写发至本站的邮箱 wl6@163.com

相关文章