本文给大家分享一套Python计算机视觉深度学习物体检测实战资源课程视频,希望可以帮助有需要的同学
资源简介:
计算机视觉-物体检测-通用解决框架Mask-Rcnn实战课程旨在帮助同学们快速掌握物体检测领域当下主流解决方案与网络框架构建原理,基于开源项目解读其应用领域与使用方法。通过debug方式,详细解读项目中每一模块核心源码,从代码角度理解网络实现方法与建模流程。为了方便同学们能将项目应用到自己的数据与任务中,实例演示如何针对自己的数据集制作标签与代码调整方法,全程实战操作,通俗讲解其中复杂的网络架构。
课程目录
1-1 课程简介.mp4
1-2 Mask-Rcnn开源项目简介.mp4
1-3 开源项目数据集.mp4
1-4 参数配置.mp4
2-1 FPN网络架构实现解读.mp4
2-10 RoiPooling层的作用与目的.mp4
2-11 RorAlign操作的效果.mp4
2-12 整体框架回顾.mp4
2-2 FPN层特征提取原理解读.mp4
2-3 生成框比例设置.mp4
2-4 基于不同尺度特征图生成所有框.mp4
2-5 RPN层的作用与实现解读.mp4
2-6 候选框过滤方法.mp4
2-7 Proposal层实现方法.mp4
2-8 DetectionTarget层的作用.mp4
2-9 正负样本选择与标签定义.mp4
3-1 Labelme工具安装.mp4
3-2 使用labelme进行数据与标签标注.mp4
3-3 完成训练数据准备工作.mp4
3-4 maskrcnn源码修改方法.mp4
3-5 基于标注数据训练所需任务.mp4
3-6 测试与展示模块.mp4
4-1 COCO数据集与人体姿态识别简介.mp4
4-2 网络架构概述.mp4
4-3 流程与结果演示.mp4
5-1 迁移学习的目标.mp4
5-2 迁移学习策略.mp4
5-3 Resnet原理.mp4
5-4 Resnet网络细节.mp4
5-5 Resnet基本处理操作.mp4
5-6 shortcut模块.mp4
5-7 加载训练好的权重.mp4
5-8 迁移学习效果对比.mp4
6-1 物体检测概述.mp4
6-2 深度学习经典检测方法.mp4
6-3 faster-rcnn概述.mp4
6-4 论文解读.mp4
6-5 RPN网络架构.mp4
6-6 损失函数定义.mp4
6-7 网络细节.mp4
点击获取课程资源:Python计算机视觉深度学习物体检测实战
https://zy.98ke.com/zyjn/34961.html?ref=4
1、IT大王遵守相关法律法规,由于本站资源全部来源于网络程序/投稿,故资源量太大无法一一准确核实资源侵权的真实性;
2、出于传递信息之目的,故IT大王可能会误刊发损害或影响您的合法权益,请您积极与我们联系处理(所有内容不代表本站观点与立场);
3、因时间、精力有限,我们无法一一核实每一条消息的真实性,但我们会在发布之前尽最大努力来核实这些信息;
4、无论出于何种目的要求本站删除内容,您均需要提供根据国家版权局发布的示范格式
《要求删除或断开链接侵权网络内容的通知》:https://itdw.cn/ziliao/sfgs.pdf,
国家知识产权局《要求删除或断开链接侵权网络内容的通知》填写说明: http://www.ncac.gov.cn/chinacopyright/contents/12227/342400.shtml
未按照国家知识产权局格式通知一律不予处理;请按照此通知格式填写发至本站的邮箱 wl6@163.com