[论文阅读] 颜色迁移-Linear Monge-Kantorovitch(MKL)
文章: The Linear Monge-Kantorovitch Linear Colour Mapping for Example-Based Colour Transfer, [paper], [matlab代码]
1-算法原理
本文将颜色迁移变成数据分布的转换问题, 因而本文需要解决2个方面的问题, 如何描述图像颜色分布, 二是如何对数据分布进行变换.
对于数据分布, 本文使用均值和协方差来对数据分布进行描述, 对于分布变换, 本文使用线性变换进行处理.
数据的均值和协方差比较简单, 因而本文的重点在于寻找变换方法. 本文使用的线性变换如下所示:
t(u)=T\left(u-\mu_u\right)+\mu_v \\
T \Sigma_u T^T=\Sigma_v \tag{5}
\end{array}\right.
\]
式中, \(u\) 为原始图像, \(v\) 为目标图像, \(\mu\) 为均值, \(\Sigma\) 为协方差, \(T\) 为需要求解的线性变换.
让 \(\Sigma_u = AA^T\) , \(\Sigma_v = BB^T\), 则
(TA)(TA)^T = BB^T \\
TA = B \\
T = BA^{-1}
\]
只要知道了A和B即可知道线性变换T.
2-算法核心
本文的核心就是寻找A和B. 文中主要使用的方法是矩阵分解, 介绍了几种方法.
2.1-Independent Transfer(IT)
首先介绍的是每个通道单独进行转换时, 协方差变成了对角矩阵, 对角元素为每个通道的方差的平方根, 这样变换公式为:
\sqrt{\frac{\operatorname{var}\left(v_1\right)}{\operatorname{var}\left(u_1\right)}} & & 0 \\
0 & \ddots & \\ \tag{11}
& & \sqrt{\frac{\operatorname{var}\left(v_N\right)}{\operatorname{var}\left(u_N\right)}}
\end{array}\right)
\]
这种变换方式可以使用如下公式等价, 即为 Color transfer between images 中描述的方法
\]
式中, i为通道, s表示源图像, t表示目标图像. 这种方法需要假设图像各颜色通道分布是独立可分离的, 但实际情况可能不满足这种情况, 因而实际效果可能不好. 需要先将图像转换到不相关的颜色空间, 一般在Lab颜色空间效果较好.
上图中, 依次为原始图像, 参考图像, rgb空间结果, lab空间结果.
2.2-Cholesky Decomposition(CD)
关于 Cholesky Decomposition 可以参考:
- 三十分钟理解:矩阵Cholesky分解,及其在求解线性方程组、矩阵逆的应用_大饼博士X的博客-CSDN博客_cholesky分解法求解线性方程组
- Cholesky分解 – 知乎 (zhihu.com)
Cholesky Decomposition 可以将矩阵分解为 \(A=LL^T\) 形式, 这样变换公式为:
\]
文中说这种方法对于通道的顺序有一定的要求, 不同的颜色通道顺序结果不一样, 如RGB与BGR的结果很有可能不一样.
上图中, 依次为原始图像, 参考图像, rgb结果, bgr空间结果.
2.3-Square Root Decomposition(SRD)
这种方法是对 Cholesky Decomposition 方法的一种改进, 分解公式为:
\Sigma_v = P_v^T D_v P_v, \Sigma_v^{1/2} = P_v^T D_v^{1/2} P_v
\]
这样变换公式为:
\]
Square Root Decomposition 分解后, D为特征值的对角矩阵, 特征值从大到小排列, 可以实现主方向对齐, 类似PCA处理, 可以减少对颜色通道顺序的依赖, 这样在不同的颜色空间下结果类似.
这种矩阵分解的方法可能的问题是, 局部出现颜色变化不一致的问题, 应该是与 [论文阅读] 颜色迁移-Correlated Color Space 中描述的问题一样.
上图中, 依次为原始图像, 参考图像, SRD结果.
2.4-Linear Monge-Kantorovitch(MKL)
将分布变换的问题转换为最优传输的问题, 关于 Monge-Kantorovitch 可以参考: 最优传输–Monge-Kantorovich理论_asforking的博客-CSDN博客
这样变换公式为:
\]
这个算法在 Square Root Decomposition 基础上进一步进行了改进, 对变换进一步约束了位移, 这样可以最小化颜色的变化.
上图中, 依次为原始图像, 参考图像, regrain结果.
3-参考
- The Linear Monge-Kantorovitch Linear Colour Mapping for Example-Based Colour Transfer 论文理解_玉兔金兔的博客-CSDN博客
1、IT大王遵守相关法律法规,由于本站资源全部来源于网络程序/投稿,故资源量太大无法一一准确核实资源侵权的真实性;
2、出于传递信息之目的,故IT大王可能会误刊发损害或影响您的合法权益,请您积极与我们联系处理(所有内容不代表本站观点与立场);
3、因时间、精力有限,我们无法一一核实每一条消息的真实性,但我们会在发布之前尽最大努力来核实这些信息;
4、无论出于何种目的要求本站删除内容,您均需要提供根据国家版权局发布的示范格式
《要求删除或断开链接侵权网络内容的通知》:https://itdw.cn/ziliao/sfgs.pdf,
国家知识产权局《要求删除或断开链接侵权网络内容的通知》填写说明: http://www.ncac.gov.cn/chinacopyright/contents/12227/342400.shtml
未按照国家知识产权局格式通知一律不予处理;请按照此通知格式填写发至本站的邮箱 wl6@163.com